Reiterated homogenization of monotone operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Homogenization of Monotone Operators

In this paper we prove a generalization of the iterated homogenization theorem for monotone operators, proved by Lions et al. in [20] and [21]. Our results enable us to homogenize more realistic models of multiscale structures.

متن کامل

Numerical Homogenization of Monotone Elliptic Operators

In this paper we construct a numerical homogenization technique for nonlinear elliptic equations. In particular, we are interested in when the elliptic flux depends on the gradient of the solution in a nonlinear fashion which makes the numerical homogenization procedure nontrivial. The convergence of the numerical procedure is presented for the general case using G-convergence theory. To calcul...

متن کامل

Correctors for the Homogenization of Monotone Parabolic Operators

In the homogenization of monotone parabolic partial differential equations with oscillations in both the space and time variables the gradients converges only weakly in L p. In the present paper we construct a family of correctors, such that, up to a remainder which converges to zero strongly in L p , we obtain strong convergence of the gradients in L p .

متن کامل

Reiterated Homogenization in BV via Multiscale Convergence

Multiple-scale homogenization problems are treated in the space BV of functions of bounded variation, using the notion of multiple-scale convergence developed in [35]. In the case of one microscale Amar’s result [3] is recovered under more general conditions; for two or more microscales new results are obtained. AMS Classification Numbers (2010): 49J45, 35B27, 26A45

متن کامل

Some Homogenization and Corrector Results for Nonlinear Monotone Operators

This paper deals with the limit behaviour of the solutions of quasi-linear equations of the form − div (a (x, x/εh, Duh)) = fh on Ω with Dirichlet boundary conditions. The sequence (εh) tends to 0 and the map a(x, y, ξ) is periodic in y, monotone in ξ and satisfies suitable continuity conditions. It is proved that uh → u weakly in H 1,2 0 (Ω), where u is the solution of a homogenized problem − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics

سال: 2000

ISSN: 0764-4442

DOI: 10.1016/s0764-4442(00)00242-1